【证法1】(赵爽证明)
以a、b 为直角边(b>a), 以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于 . 把这四个直角三角形拼成如图所示形状.
∵ RtΔDAH ≌ RtΔABE,
∴ ∠HDA = ∠EAB.
∵ ∠HAD + ∠HAD = 90º,
∴ ∠EAB + ∠HAD = 90º,
∴ ABCD是一个边长为c的正方形,
它的面积等于c2.
∵ EF = FG =GH =HE = b―a ,
∠HEF = 90º.
∴ EFGH是一个边长为b―a的正方形,它的面积等于(b-a)2.
∴ .
∴ .
赵爽:字君卿,东吴人。中国数学家。东汉末至三国时代人。生平不详,约生活于公元3世纪初。
【证法2】(邹元治证明)
以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 . 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.
∵ RtΔHAE ≌ RtΔEBF,
∴ ∠AHE = ∠BEF.
∵ ∠AEH + ∠AHE = 90º,
∴ ∠AEH + ∠BEF = 90º.
∴ ∠HEF = 180º―90º= 90º.
∴ 四边形EFGH是一个边长为c的
正方形. 它的面积等于c2.
∵ RtΔGDH ≌ RtΔHAE,
∴ ∠HGD = ∠EHA.
∵ ∠HGD + ∠GHD = 90º,
∴ ∠EHA + ∠GHD = 90º.
又∵ ∠GHE = 90º,
∴ ∠DHA = 90º+ 90º= 180º.
∴ ABCD是一个边长为a + b的正方形,它的面积等于 .
∴ . ∴ .
【证法3】(1876年美国总统Garfield证明)
以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于 . 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.
∵ RtΔEAD ≌ RtΔCBE,
∴ ∠ADE = ∠BEC.
∵ ∠AED + ∠ADE = 90º,
∴ ∠AED + ∠BEC = 90º.
∴ ∠DEC = 180º―90º= 90º.
∴ ΔDEC是一个等腰直角三角形,
它的面积等于 .
又∵ ∠DAE = 90º, ∠EBC = 90º,
∴ AD∥BC.
∴ ABCD是一个直角梯形,它的面积等于 .
∴ .
∴ .
詹姆斯·艾伯拉姆·加菲尔德(James Abram Garfield,1831~1881)
美国政治家、数学家,美国共和党人,第20任总统。生于俄亥俄州南北战争期间加入北方军队,与南方奴隶制军队作战,拥有少将军衔。曾于1881年当选总统,他的任期正处于从政党分肥制到文官制的过渡时期,他在上任半年後被一个谋官未成者暗杀而死。他在数学方面的贡献主要是在勾股定理的证明方面的新成就,他也是美国历史上唯一一位数学家出身的总统。他的第一夫人是卢克丽霞·鲁道夫。
【证法4】(欧几里得证明)
做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结BF、CD. 过C作CL⊥DE,交AB于点M,交DE于点L.
∵ AF = AC,AB = AD,∠FAB = ∠GAD,
∴ ΔFAB ≌ ΔGAD,
∵ ΔFAB的面积等于 ,
ΔGAD的面积等于矩形ADLM的面积的一半,
∴ 矩形ADLM的面积 = .
同理可证,矩形MLEB的面积 = .
∵ 正方形ADEB的面积= 矩形ADLM的面积 + 矩形MLEB的面积
∴ ,即 .
欧几里德(Euclid of Alexandria),生活在亚历山大城的欧几里得(约前330~约前275)是古希腊最享有盛名的数学家。以其所著的《几何原本》(简称《原本》)闻名于世
------文章版权归原作者所有, 未经允许请勿转载, 如有任何问题请联系我们。